Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 171, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252378

RESUMO

BACKGROUND: It is not always easy to find a universal protocol for the extraction of genomic DNA (gDNA) from plants. Extraction of gDNA from plants such as shea with a lot of polysaccharides in their leaves is done in two steps: a first step to remove the polysaccharides and a second step for the extraction of the gDNA. In this work, we designed a protocol for extracting high-quality gDNA from shea tree and demonstrate its suitability for downstream molecular applications. METHODS: Fifty milligrams of leaf and root tissues were used to test the efficiency of our protocol. The quantity of gDNA was measured with the NanoDrop spectrometer and the quality was checked on agarose gel. Its suitability for use in downstream applications was tested with restriction enzymes, SSRs and RAPD polymerase chain reactions and Sanger sequencing. RESULTS: The average yield of gDNA was 5.17; 3.96; 2.71 and 2.41 µg for dry leaves, dry roots, fresh leaves and fresh roots respectively per 100 mg of tissue. Variance analysis of the yield showed significant difference between all tissue types. Leaf gDNA quality was better compared to root gDNA at the absorbance ratio A260/280 and A260/230. The minimum amplifiable concentration of leaf gDNA was 1 pg/µl while root gDNA remained amplifiable at 10 pg/µl. Genomic DNA obtained was also suitable for sequencing. CONCLUSION: This protocol provides an efficient, convenient and cost effective DNA extraction method suitable for use in various vitellaria paradoxa genomic studies.


Assuntos
Genômica , Árvores , Técnica de Amplificação ao Acaso de DNA Polimórfico , DNA , Polissacarídeos
2.
Gene ; 439(1-2): 1-10, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19306919

RESUMO

The aim of this review is to highlight the role of myo-inositol phosphate synthase (MIPS), which catalyses the first step in inositol biosynthesis and of sucrose synthase (Sus), an enzyme involved in UDP-glucose formation, the principal nucleoside diphosphate in the sucrose cleavage reaction and in trehalose biosynthesis. These two enzymes are involved in various physiological processes including seed growth and resistance to biotic and abiotic stresses. The study of mutated MIPS and Sus genes in some crops, such as soybean and cotton, has shown that these two proteins are directly involved in embryogenesis. They exhibit several isoforms that are essential for normal seed development. The possible role of both genes in seed development is discussed in this review.


Assuntos
Glucosiltransferases/metabolismo , Mio-Inositol-1-Fosfato Sintase/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plantas/metabolismo , Sementes/metabolismo , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Gossypium/embriologia , Gossypium/metabolismo , Inositol/metabolismo , Dados de Sequência Molecular , Mio-Inositol-1-Fosfato Sintase/genética , Filogenia , Proteínas de Plantas/genética , Plantas/embriologia , Plantas Geneticamente Modificadas/embriologia , Glycine max/embriologia , Glycine max/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA